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REDUCED-PRESSURE ENVIRONMENT EFFECTS ON ROLLING-ELEMENT

FATIGUE LIFE WITH SUPER-REFINED MINERAL OIL LUBRICANT

by David W. Reichard, Richard J. Parker, and Erwin V. Zaretsky

Lewis Research Center

SUMMARY

A modified NASA five-ball fatigue tester was used to investigate the effect of a

reduced-pressure environment on rolling-element fatigue life, deformation, and wear of

SAE 52100 steel balls with a super-refined naphthenic mineral oil used as the lubricant.

Tests were conducted at atmospheric pressure, at a 20 contact angle, with a thrust

load of 60 pounds (267 N) to produce an initial maximum Hertz stress of 800 000 psi

(5. 5X109 N/m2) at a shaft speed of 4900 rpm with no heat added. The atmospheric-

pressure tests served as reference data for tests conducted at a reduced pressure, ap-

proximately the vapor pressure of the lubricant. For these reduced-pressure tests, the

ball specimens were lubricated by a quasi-mist method and by immersion in the lubricant.

In both cases, all other test conditions were the same as those in the atmospheric-

pressure tests.
No significant difference in the fatigue lives was observed for tests conducted at

atmospheric pressure and those conducted at reduced ambient pressure. The amounts

of deformation and wear for the two pressure conditions differed little, regardless of the

lubrication mode employed, which was an indication of a sufficient elastohydrodynamic

lubricating film at the reduced-pressure levels.

INTRODUCTION

High reliability is required in aerospace applications where rotating machinery must

function unattended for periods of up to 10 000 hours. Among the rotating machinery com-

ponents are rolling-element bearings. Bearings will be used in space turboelectric

power generating systems necessary for long-term-life support systems and electric

propulsion systems (ref. 1). When all factors, such as design, lubrication, and oper-

ating conditions, for a specific application have been optimized, fatigue failure will be

the life-limiting factor (refs. 1 and 2). In these aerospace applications, rolling-element

bearings will be used in semisealed systems having an environmental pressure less than

atmospheric pressure, near that of the lubricant vapor pressure.

A problem that might be encountered in a reduced-pressure environment is the re-



moval of surface oxide films by wear more rapidly than they can be reformed (ref. 1).
For example, it was reported (refs. 3 and 4) that, for a polyphenyl ether lubricant, the

wear rate under predominantly boundary lubrication was much greater at reduced pres-

sure then at atmospheric pressure. However, where elastohydrodynamic conditions ex-

ist and complete separation of the rolling-element surfaces is effected, surface oxides

would be of small importance in inhibiting wear for long-term operation.

A second problem that might be encountered in the reduced-pressure environment is

the evaporation of the lubricating fluid, which limits the useful time the bearing can be

operated. With properly designed static and dynamic seals, however, lubricant evapor-
ation can be reduced to a negligible amount for extended operation (refs. 5 and 6).

Rolling-element fatigue life is affected by lubricant bulk viscosity. A 50-percent de-

crease in the apparent bulk viscosity of a super-refined mineral oil and in an ester-base

oil was observed when the lubricants were saturated with nitrogen gas (ref. 7). Since

most lubricants contain air or gases at atmospheric pressure, lubricant viscosity may
be increased by degassing. In general, as lubricant viscosity increases, so does the

fatigue life of a rolling-element bearing (ref. 8).
The present investigation was conducted to determine the effect of a reduced-

pressure environment on rolling-element operation with a mineral oil lubricant. The

objectives were to determine experimentally

(1) If a relation exists between ambient pressure and rolling-element fatigue life

(2) If, under reduced-pressure conditions, rolling-element fatigue life is different

with quasi-mist (partial flashing of the lubricant on exposure to the reduced

pressure) lubrication and total immersion of the rolling elements in the lubricant

(3) If differences exist in the deformation and wear of rolling-elements run under

normal atmospheric conditions and in a reduced-pressure environment

Tests were conducted with SAE 52100 steel 1/2-inch- (1. 27-cm-) diameter balls of

nominal Rockwell-C hardness 62. 5 at atmospheric pressure and at the approximate
p- *3 0

vapor pressure of the lubricant (less than 10" torr or 1. 33x10" N/m ). Test conditions

were a temperature of 130 F (327 K); a 20 contact angle; a thrust load of 60 pounds
Q 0

(267 N), which produced a maximum Hertz stress of 800 000 psi (5. 5x10 N/m ); and a

speed of 4900 rpm with no heat added. All experimental results were obtained with ball

specimens from the same heat of material and lubricant from the same lubricant batch.

APPARATUS

The NASA five-ball fatigue tester, modified for reduced-pressure testing, was used

for this investigation. The modified five-ball apparatus is described in reference 3 and

is shown in figure l(a). Briefly, it comprises an upper test ball pyramided on four lower
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(b) Test assembly.

Figure 1. Five-ball fatigue tester.
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test balls which are positioned by a separator and are free to rotate in an angular-contact

raceway (fig. l(b)). System loading and drive are supplied through a vertical drive shaft.

Failure detection and automatic shutdown instrumentation permitted long-term unmoni-

tored tests.
The apparatus modification comprises access tubes to the test chamber for a vacuum

pumping system and its accompanying pressure monitoring instrumentation, and a me-

chanical shaft seal of the spring-loaded, carbon-face type. The seal was lubricated and

cooled with the test lubricant. Its performance at 4900 rpm was such that no leaks could

be detected with a helium leak detector.
^

The vacuum pumping system was a commercial system capable of attaining pressures

of 10" torr (1.3x10 N/m ). It comprises a mechanical forepump and a 2-inch (5.08-cm)
oil diffusion pump with a liquid-nitrogen cold trap. An automatic liquid-nitrogen-

dispensing system was provided to make possible the necessary long-term tests. A
schematic diagram of the vacuum system is shown in figure 2.

Test lubricant was supplied to the test chamber from a reservoir that had a cover

gas of nitrogen under a slight pressure. The lubricant flow rate to the test assembly was

controlled by a valve.

Valve

^- ^- ^"Schamber \ y
Liquid-
nitrogen

_____[\/___ cold trap

D Gage valve

D U^Q
Valve

Liquid- Diffusion Mechanical fore-
nitrogen pump pump
baffle

Figured Schematic diagram of vacuum system. ^

PROCEDURE

The upper and lower test balls in the NASA five-ball fatigue tester were 1/2-inch-

(1.27-cm-) diameter SAE 52100 steel balls of nominal Rockwell-C hardness 62. 5, all

from the same heat of material. The lower balls were positioned in a raceway having a

20 contact angle. A thrust load of 60 pounds (267 N) was applied which produced a max-
Q 9

imum Hertz stress of 800 000 psi (5. 5x10 N/m in the upper-lower ball contact. A
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TABLE I. PHYSICAL PROPERTIES OF

TEST LUBRICANT, SUPER-REFINED

NAPHTHENIC MINERAL OIL

[Manufacturer’s data.

Density, g/cu cm, at

0 F (255 K) 0.908

100 F (311 K) 873

200 F (366 K) 838

300 F (422 K) 802

400 F (477 K) .768

500 F (533 K) 732

Vapor pressure (extrapolated),
mm of Hg (N/m2), at

125 F (325 K) <10~5 (1. 3xl0’3)
300 F (422 K) .07 (9.3)
400 F (477 K) 2. 0 (2. 6xl02)
500 F (533 K) 17. 0 (22. 7xl02)

Viscosity, cs, at
0 F (255 K) 10 000

30 F (271 K) 1 500

100 F (311 K) 79

210 F (372 K) 8.4

500 F (533 K) 1. 1

700 F (644 K) 6

Cleveland open cup 445 (502)
flash point, F (K)

Cleveland open cup 495 (530)
fire point, F (K)
ASTM pour point, F (K) -30 (239)

super-refined naphthenic mineral oil was used as the test lubricant. Table I gives the

properties of the lubricant.
Prior to each test, the ball specimens and test block were cleaned with a solvent,

flushed with ethyl alcohol, and wiped with clean cheesecloth. The ball specimens were

placed in the angular-contact raceway, subjected to the load, and run at a shaft speed of

4900 rpm until failure or for a period of 250 hours, whichever occurred first. (For each

revolution of the shaft, the upper ball specimens received three stress cycles. ) The
total running time of the tests was recorded.

At the completion of the tests under the atmospheric-pressure conditions, the tests
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were repeated at reduced pressure under the same test conditions. At the reduced pres-

sure, an adjustment of the applied load was necessary in order to compensate for the

added forces from the pressure differential across the seal. (The Hertzian stress

in the test system was the same as that in the atmospheric tests.

For the reduced-pressure testing, the lubricant was degassed. The degassing pro-

cedure comprised placing the lubricating fluid in a flask that was connected to a mechan-

ical vacuum pump through a liquid-nitrogen cold trap. External heat was applied to the

flask, which was agitated occasionally during the pumping process. Initially, the lubri-

cant foamed violently when agitated. After a period of approximately 2 hours, only a few

small gas bubbles remained from agitation, at which time the lubricant degassing process

was considered completed. The line to the vacuum pump was closed off, and the flask

was connected to the test chamber through a needle valve and pressurized with nitro-

gen gas (see the section, APPARATUS). The lubricant was thus sealed from the air at-

mosphere.

Prior to starting a test, the test chamber was pumped down to approximately

10~6 torr (1. 3X10"4 N/m2), and the lubricant was allowed to enter the chamber through

the needle valve. Because of the reduced pressure, the lubricant "flashed" into a quasi-

mist maintaining the pressure in the test chamber at approximately the vapor pressure

of the lubricant. The lubricant flow rate was the same as that of the atmospheric tests,
which provided sufficient elastrohydrodynamic lubrication.

A second series of reduced-pressure environment tests was conducted under an

immersed lubricant condition. In this series of tests, all conditions and procedures

were the same as those previously described with the exception that the lubricant drain-

age was modified. This modification resulted in a lubricant buildup such that the test

specimens were immersed in the lubricant. The pressure in the test chamber was ap-

proximately that of the lubricant vapor pressure.

RESULTS AND DISCUSSION

Rolling-element fatigue tests were conducted in a five-ball tester modified to permit

the investigation of the effect of a reduced-pressure.

Tests were conducted with SAE 52100 steel 1/2-inch- (1. 27-cm-) diameter balls of

nominal Rockwell-C hardness 62. 5 at atmospheric pressure and at the approximate vapor

pressure of the lubricant (less than 10"5 torr or 1. 3xl0~3 N/m2). Test conditions were

a temperature of 130 F (327 K); a 20 contact angle; a thrust load of 60 pounds (267 N),
which produced a maximum Hertz stress of 800 000 psi (5. 5xl09 N/m2); and a speed of

4900 rpm with no heat added. All experimental results were obtained with ball specimens

from the same heat of material and lubricant from the same lubricant batch.
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Effect of Reduced Pressure on Lubricant and Fatigue Life

The results of the fatigue tests are presented in figure 3. The statistical methods

outlined in reference 9 were used to analyze the fatigue data. A summary of these fatigue

data is presented in table n.
Research reported in reference 7 indicated that, for a super-refined mineral oil of

the type used in the tests reported herein, an approximate 50-percent decrease in vis-

cosity can occur when the fluid is saturated with nitrogen gas. Thus, a two-to-one in-

crease in apparent bulk viscosity can occur when the lubricant is degassed. For the

fatigue tests at atmospheric pressure, the lubricant was introduced into an air atmo-

sphere. In addition, the lubricant was used as received from the manufacturer. Expe-

rience has shown that a fluid in this condition can be highly saturated with air. Thus,

for the reduced-pressure tests, the fluid was degassed prior to usage. In addition, any

entrapped gases remaining in the lubricant would have a tendency to be eliminated when

the lubricant enters the reduced pressure of the test chamber. It was therefore assumed

that the fluid in the reduced-pressure tests had an apparent viscosity twice that in the

atmospheric-pressure tests. Investigators have shown that, as the viscosity at atmo-

spheric pressure of a mineral-oil lubricant is increased, the fatigue life of a rolling-

element also increases (refs. 1, 8, and 10). The accepted relation between fatigue life

L and lubricant viscosity p. is L Kjn", where K is a constant and n equals 0. 2 to

0. 3 (refs. 8 and 10). Therefore, if n is taken as 0.25, the fatigue life would be expect-

ed to increase under the reduced-pressure condition by approximately 19 percent based

on a two-to-one increase in viscosity. The 10-percent life is that life in which 90 percent

of the specimens tested will survive. For comparative purposes, the 10-percent life is

generally chosen throughout the bearing industry. From figure 3(d) and table II, the

10-percent fatigue life with quasi-mist lubrication at reduced pressure indicated an in-

crease in fatigue life of approximately 50 percent over that obtained with the atmospheric-

pressure tests. However, the immersed-lubrication reduced-pressure tests indicate a

reduction in fatigue life by approximately 20 percent. Therefore, in order to come to

any conclusions regarding these results, the data must be analyzed on a statistical basis.

The confidence that can be placed in the experimental results was determined sta-

tistically using the methods given in reference 9. Each of the reduced-pressure results

was compared with the results of the atmospheric tests, and confidence numbers for the

10-percent life were calculated and are given in table n. These confidence numbers in-

dicate the percentage of the time that the 10-percent life, obtained with each series of

tests at the reduced-pressure condition, will have the same relation to the 10-percent

life obtained with the atmospheric tests. Thus, a confidence number of 60 percent means

that 60 out of 100 times the specimens tested at the quasi-mist reduced-pressure condi-

tion will be ranked as in table n. A 68-percent confidence is approximately equal to a
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Figure 3. Rolling-element fatigue life at atmospheric and reduced pressures in five-ball fatigue tester. Shaft speed, 4900 rpm-
contact angle, 20; race temperature, 130 F (327 K); maximum Hertz stress, 800 000 psi (5.5xl09 N/m2); lubricant, super-
refined naphthenic mineral oil.
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TABLE n. RESULTS OF FATIGUE TESTS CONDUCTED IN NASA

FIVE-BALL FATIGUE TESTER

[Maximum Hertz stress, 800 000 psi (5. 5xl09 N/m2); lubricant, super-refined

naphthenic mineral oil; contact angle, 20; ball material, SAE 52100 steel; shaft

speed, 4900 rpm; race temperature, 130 F (327 K).

Pressure Lubrication Fatigue life, millions Weibull Confidence Failure

environment of stress cycles slope number at index

10-percent (b)
10-percent 50-percent ^g ^^life lue percent’

(a)

Atmospheric Drop feed 23 122 1. 1 25 out of 38

Reduced" Quasi-mist’1 34 168 1.2 60 13 out of 22

Reduced0 Immersed 18 98 1. 1 58 10 out of 10

Percentage of time that 10-percent life obtained at reduced-pressure condition will

have the same relation to the 10-percent life obtained at atmospheric-pressure

condition.

Number of fatigue failures out of total number tested.

Lubricant vapor pressure, less than 10" torr (1. 3x10" N/m ).

Lubricant was drop fed; upon entrance to the test chamber, lubricant flashed into

a quasi-mist because of reduced pressure.

one sigma deviation, which, for statistical purposes, is considered insignificant to con-

clude that there is any difference in early life between the reduced-pressure tests and

those conducted under atmospheric conditions.

While no statistical significance can be related to the differences in fatigue life be-

tween the quasi-mist reduced-pressure tests and those conducted under atmospheric

conditions, the immersed-lubrication reduced-pressure tests had a life approximately

50 percent less than those run under reduced pressure with the quasi-mist lubrication.

The calculated confidence number between these two reduced-pressure tests is approxi-

mately 70 percent at the 10-percent life level. Again, no significance can be attributed

to these life differences. Therefore, it can be concluded that, while there may be some

effects of a reduced-pressure environment and method of lubrication on fatigue life,

these effects are statistically insignificant where early failures are of importance.
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Deformation and Wear

Transverse profile traces of the test specimen running tracks were made with a

surface profile tracer to determine whether there was an effect of the reduced pressure

or the mode of lubrication on the deformation and wear of the rolling elements. Sche-

matic diagrams of a transverse section of a ball running track and a surface trace are

shown in figure 4. The crosshatched area Arp in figure 4(b) represents deformation

and wear. The shaded area Ap. represents the plastic deformation. The difference in

the two areas (Arp Ap.) is the wear. The depth of the running track is represented by

H in figure 4(b).

^Profile _^.=--’~~~~~^=^a^
.^Spr^re ^Chord ^"^.

(a) Schematic diagram of transverse section of ball surface.

PFT IArea ’-/
^--f--i- EHISII Deformation An -j
[--J 1- ’. 12Z3 Deformation plus Jf---Magnified profile-^-- wear A
---deviation^

---Surface of --r-V/ V ’’’’/^i// Track
---truesphere=’--\/7, 7,
----\- \ \ \X/^^’4\---m\m\\\\\

(b) Transverse profile trace of ball running track at high magnification.

Figure 4. Transverse section of ball running track.

Profile traces were made at six randomly chosen locations across the running

tracks of each of 10 upper test balls selected from each of the three test series. These

upper test balls were selected to encompass the full range of running times. Typical

profile traces for upper test specimens for each of the test series are shown in figure 5.

Experience has shown that a lack of deformation area Ap> is indicative of gross wear

and, thus, a lack of elastohydrodynamic lubrication. Conversely, the presence of the

deformation area Ap. indicates minimal wear and the presence of an elastohydrodynamic

film.

The areas of deformation Ap. and deformation plus wear Arp were measured and

averaged for each test series. The areas of deformation Ap. and of wear Arp-Ap. are

10
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Figure 5. Typical profile traces of upper-ball track for various ambient
pressures and lubrication modes. Shaft speed, 4900 rpm; contact
angle, 20; race temperature, 130 F (327 K); maximum Hertz stress.
800 000 psi (5.5xl09 N/m2); lubricant, super-refined naphthenic
mineral oil.

TABLE m. EFFECT OF DEFORMATION AND WEAR ON MAXIMUM HERTZ STRESS FOR SAE 52100 STEEL BALLS

[Initial maximum Hertz stress, 800 000 pst (5. 5xl09 N/m2); lubricant, super-refined naphthenic mineral oil; contact angle, 20-
shaft speed, 4900 rpm; temperature, 130 F (327 K).

Lubrication Pressure Deformation Wear Calculated Effective Calculated Experimental-
method environment from from surface profile maximum theoretical- life ratio

surface trace, trace, radius, Hertz stress life ratio (b)
Ap Ap A,? (a) (b)

2 2 2 2
in. in. in. psi N/m

Drop feed Atmospheric 1.2xl0~6 7.7xl0’6 1.2xl0’6 7.7X10’6 0.38 0.97 7.71X105 53xl08 1.0 1.0

Quasi-mist Reduced" 2.4 15.5 1.5 9.7 .65 1.65 7.25 50 1.7 1.5

Immersed Reduced" 1.6 10.3 1.4 9.0 .57 1.45 7.32 51 1.6 .8

No deformation of lower test balls assumed.

Ratios relative to lives obtained for atmospheric-pressure tests.
lubricant vapor pressure, less than 10~(R) torr (1. 3xl0’3 N/m^).
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summarized in table III. As can be seen, there is very little difference in wear among

the test series, which was not unexpected. When an elastohydrodynamic film is present,

most of the wear occurs at startup and shutdown. However, there appears to be a greater

amount of deformation at the reduced-pressure conditions. This permanent alteration of

the geometry (plastic deformation and wear) affects the calculated theoretical maximum

Hertz stress. An effective maximum Hertz stress can be calculated using a deformed

transverse-profile radius. This deformed profile radius (ref. 11) can be expressed

as

/A \2(AT)
,. \H /

2 [R VR2 (A^/H)2 HJ
where

2 2
Arp deformation plus wear area scaled from surface trace, in. cm

H depth of running track scaled from surface trace, in. cm

R radius of ball, in. cm

r effective radius of ball profile after deformation plus wear, in. cm

The deformed profile radii and the effective maximum Hertz stresses are given in

table HI. The recalculated stresses show reductions from the initial maximum Hertz

stress of 800 000 psi (5. 5xl09 N/m ranging from about 4 to about 9 percent for the

atmospheric-pressure tests and the reduced-pressure quasi-mist tests, respectively.

The effect of these stress differences on fatigue life can be calculated using the commonly

accepted stress-life relation Lcc^ The theoretical-life ratios calculated with this

relation are given in table in. The experimental-life ratios are also shown in table HI.

Because the theoretical- and experimental-life differences are so small, no real signif-

icance can be placed on the deformed profile radii beyond that which has been discussed.

Based on the results presented herein, there is no significant effect of operation at

a reduced-pressure environment on fatigue life, material deformation, rolling-element

wear, and, hence, on elastohydrodynamic lubrication. Therefore, for the lubricant-

material combination studied, it may be concluded that the criteria governing the load

capacity of rolling-element bearings at atmospheric-pressure environments may be

successfully employed for space applications that utilize a semisealed system where the

ambient pressure is the vapor pressure of the lubricating fluid.

12



SUMMARY OF RESULTS

A modified NASA five-ball fatigue tester was used to investigate the effect of a
reduced-pressure environment on rolling-element operation. Tests were run with

SAE 52100 steel balls at atmospheric pressure; at a 20 contact angle; with a thrust
load of 60 pounds (267 N), which produced a maximum Hertz stress of 800 000 psi

Q 0
(5. 5x10 N/m ); and at a speed of 4900 rpm with no heat added. Two additional series
of tests were run under the same test conditions with the exception that the ambient
pressure was approximately that of the vapor pressure of the lubricant. The first
series of reduced-pressure tests was conducted with the lubricant introduced into the
test chamber in a quasi-mist form, and the second series was conducted with the ball
specimens immersed in the lubricant. The following results were obtained:

1. The difference in fatigue life between tests conducted at atmospheric pressure and
those conducted at reduced-pressure is statistically insignificant, regardless of the lubri-
cation mode employed. Therefore, for the lubricant-material combination used in these

tests, the load capacity employed for rolling-element bearings used for atmospheric-
pressure operation may be employed successfully for rolling-element bearings used in a
semisealed system when the ambient pressure is that of the lubricant vapor pressure.

2. The amount of wear was essentially the same for tests conducted at atmospheric-
pressure conditions and for those conducted at reduced-pressure conditions. A greater
amount of plastic deformation occurred at the reduced-pressure condition. However, no
real significance can be placed in these differences.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 6, 1967,
120-27-04-21-22.
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